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Abstract—The Wagner hypothesis has been widely accepted in the buckling analysis of thin-walled
members. Recently. the validity of Wagner hypothesis has been questioned by Ojalvo based on the
theorem of minimum potential energy following the method used by Bleich. Since then, efforts have
been made by several investigators to settie the dispute on the validity of Wagner hypothesis. but
no general agreement has vet been reached. The purpose of this paper is to show more clearly the
vahidity of Wagner hypothesis using the same method as adopted by Ojalvo. o this way, we show
the ditference between the two tormulations and point out more precisely why Ojalvo’s theories are
meorrect,

[. INTRODUCTION

The “Wagner hypothesis™ (1936) has gencrally been accepted in the buckling analysis of
thin-walled members. However, Ojalvo (1981) rejected this hypothesis and presented a new
theory for the flexural torsional buckling of columns and monosymmetric beams. Soon
alter the presentation of the new theory, critical discussions (Kitipornchat and Dux, 1982
Leko, 1982 Trahair, 1982 Studnicka and Kristek, 1982 Haaijer, 1983) were made against
his new theory. In spite of these discussions, Ojalvo (1982, 1983, 19874, b) has been
repeatedly insisting on the validity of his theory up to the present. Recently, in order to
vahidate his theory, Ojalvo (19874, b) showed a different procedure based on the theorem
of minimum potential energy following the method shown by Bleich (1952). By this pro-
cedure he obtained exactly the same theory as he derived from the analysis of free body
diagram (Ojalvo, 1981) and again rejected the Wagner hypothesis. This rejection was also
argued to be invalid by Kitipornchai er «f. (1987) and Trahair and Papangelis (1987). They
contirmed the validity of the Wagner cttects by analyzing the thin-walled beams as a three-
dimensional sohd and then using this to obtain a one-dimensional theory. Although not
well known in North America, a more refined and exact method similar to the above has
already been used in Japan (Nishino er af., 1973; Goto ¢r al., 1985). Nishino ¢r al.
(1973) dertved a refined finite displacement theory of thin walled members from continuum
mechantes, utilizing the theorem of virtual work under beam assumptions. More recently,
Goto et al. (1985) obtained an exact finite displacement theory of rods with solid cross
section, where no approximations are introduced exeept the usual beam assumptions. Both
of these theories yield Wagner's A term naturally and automatically through variational
calculus without introducing the Wagner hypothesis,

In spite of the efforts so fur to settle the dispute on the validity of Wagner hypothesis,
an agreement has not yet been obtained. This is mainly because the two conflicting theories,
i.c. theories with and without Wagner hypothesis, use different procedures to validate
themselves.

The purpose of this paper is to show more clearly the validity of Wagner hypothesis.
To this end, the sume method as Ojalvo adopted recently. that is, the method based on the
theorem of minimum potential encrgy. is utilized to obtain a buckling theory of thin-walled
members. This procedure enables us to point out the Ojalvo’s mistakes more precisely by
showing the discrepancy between his formulation and ours. Herein, as analyzed by Ojalvo
(1981, 1987b), the flexural torsional buckling of a column as well as that of a monosymmetric
beam are chosen as examples.
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Fig. 1. Cross section of thin-walled member.

2 COORDINATES AND DISPLACEMENT FIELD

Consider a straight, thin-walled member as shown in Fig. 1. A Cartesian coordinate
system (x, y, 2) is introduced at the initial contiguration of the member with the coordinate
= along the member axis. Coordinate axes (x, y) are chosen such that they coincide with
the principal axes of the cross section. The member axis at the origin of the (x, y) coordinates
is specifically called centroidal axis. In addition to the (v, y, z) coordinates, coordinate s is
introduced along the middle line of the cross section.

Translutional displucement components in the directions ol (x, v, 2) coordinates are
expressed by (w, e, w).

From the condition of no change of cross-sectional shapes, the x and y components
of translational displacement on the cross section can be expressed as

u=u,—(y—ry)0. r=r,+(x—x)0 (la,b)

where 0 ts the rotational angle around the = axis and subscript s denotes a quantity on the
shear center S(v,. v,) of the cross section. Further, utilizing the Bernoulli-Euler hypothesis,
the displacement in z-direction can be obtained us

W= W, —xu, — v, —wtl )

where (7)” denotes differentiation with respect to =, subscript ¢ expresses a quantity on the
centroidal axis, and w(s) is a warping function. In the buckling analysis, it is necessary to
distinguish the incremental displacements at buckling from the total displacements up to
buckling. Hence. for this distinction, the quantities with bars and stars shown below are
used throughout this paper.

o 0 (total displacements up to buckling)

w*, c*ow* 0% (incremental displacements at buckling).

For later convenience, the increment of the translational displacements (u*, 0*, w*) are
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expressed in terms of longitudinal displacement w? at centroid and the transverse dis-
placements (u*,r*) at shear center. These expressions are obtained from egns (1) and (2)
as

w* = u¥—(v—=1)0*% ot =+ (x—x)0*

w¥ =X —xur - — i (3a—)

For the ease of mathematical manipulations, the origin of coordinate s can be selected in
such a manner that

J wdd4=0 (4)
1

in which j',(') dA denotes an integration over the cross-sectional area.

Besides eqn (4). the coordinates and the displacement components adopted here yield
the following convenient relations.

Coordinate axes v and y coincide with the principal axes of the cross section. Thus,

we have
J xdd =0, J rdda =0, j ardd =0, (5a-¢)
A 1 A

Point S is the shear center of the cross section for which the following relation holds.

J wxdd =0, J oy da =0 (6a,b)
A A

3. TOTAL POTENTIAL ENERGY

The total potential energy IT of a structural system ts composed of the internal strain
encrgy U and the potential energy B of the external foads and is expressed by

M=U+W. 7

When deriving the value of the total potential energy in buckling analysis, the load state
Just before buckling is used as a reference state. In the derivation of total potential energy,
we have to consider incremental displacement terms at least up to the second order since
the buckling load is known from the sccond variation (6°IT) of I1. Equilibrium equations
can be obtained from the following stationary condition.

Ol = U+ =0, (8)

4. BUCKLING OF A CENTRALLY LOADED COLUMN

4.1, Buckling phenomena

Consider a thin-walled column of length L subjected to an end compressive force P
passing through centroid.

Up to the critical compressive force P,,. this column is strained only in the longitudinal
direction. The buckling of this structure is classificd as a symmetric bifurcation (Tompson
and Hunt, 1973). Thus, when the compressive force Z reaches £, transverse and torsional
displacements appear without the increase of the compressive force. This phenomena is
cxactly the same as that of the in-plane buckling of a column.
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Fig. 2. Centrally compressed column.

4.2, Internal strain energy

As explained in Section 4.1, there are no out-of-plane displacements before buckling
and no increment in axial force at buckling. Hence. the strain energy expressed in terms of
incremental displacements up to the second order terms is given as follows, simplified with
the help of eqns (4)-(6).

!
J CET ") 4+ EL(e* )+ GJO™) + EL0*)7 | d:z. {9

This expression shown by Bleich (1952) 1s the same as Ojalvo (1987b) used.

4.3, Potential encryy of external foree
I the axial displacement ol this structure is tixed at = = £, as shown i Fig. 2, the
potential energy ot external foree s given by

o= - Pur. (10)
where w*|._y is the tncremental axial displacement of centroid at = = 0. w®{,_, Is turther
o be expressed in terms of the incremental out-of-plane displucements up to the sccond

order terms.

Consider an infinitesimal tiber d=- of the column initially parallel to the centroidal axis
as shown in Fig. 2. The length of the fiber just before buckling and that after buckling are
denoted here respectively by (1+¢.) dzand (1 +¢6.4+¢¥) dz.

As casily scen from Fig, 3, these quantities can be expressed by displacement com-
ponents as

t___ Q+:—§dz

@s
&
/C'(,

Fie. 3 Detormation of infinitesimal longitudinal element.
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(1+¢é.)d:-= (l + %‘é) d-

(l+e:+e:)d-—{\/|:(l+E+ a:)+<@:>+<6:>:|}d' (11a,b)

where ¢, is interpreted as an axial strain before buckling and e? is an increment of it at
buckling.
Since the displacements are small. the following condition holds.

cu* cv* cw Cw*
E«l' E:—«l' E+E-<<l' (12a—<)

Fromeqn (11b). approximated by eqns (12). é.+ ¢* is expressed in terms of incremental
displacement up to the second order terms as

7 . o Ow* 1/ 1 [oe*Y 3
erer =+l ) Yol ) (13

The validity of the above approximation procedure is explained in the Appendix.
Considering eqns (a) and (13), the incremental strain ¢ is given by

. LI WA TTL A W AN (14)
er= -+ 0 )+ .
. oz 2\ 0z 2\

Introducing eqns (3) into eqn (14), ¢¥* can be rewritten in the form

-

3

ef = wr —xud —yet —wl* + Mt = (p—p)0* )+ Her + (o= x)0% )

(15)

During buckling there is no increment in axial force und, hence, the following equation
holds.

ja;’dA=Eje;“dA=0 (16)
A A

where ¢ is an increment of axial stress.
Substituting eqn (15) into eqn (16) and considering eqns (4) and (5) yields

AW + L AL*) 4 (%)) + A3, 0% 1 — x,0% %)

!
+ 5[ {(r=r) +(e=x)?} dA(0*)? = 0. (17)

~ JA
Equation (17) can be solved for w?*’ as
wr = = M) + @) =y0% ur + x,0* e

l ) b3 2
N e LN S

Axial displacement w?|._, at = = 0 can finally be obtained as follows, by integrating
eqn (18) with respect to = and then introducing the boundary condition that the axial
displacement is fixed at = = L.
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l:(u:"'): F R 207 (o — )

1 . . .
+ 'J‘ =)+ (x—x) dA (H*')'] d-

A
e (19
Wagner effect results from the underlined term.
4.4, Governing differential equations
Substituting eqns (9). (10) and (19) into eqn (8) and integrating by parts lcad to
SUHSH = [~ [ELu* " + Pu* +1v.0%)) ou*
—SELeX Y 4 P(e® —x.0%)) Su*
—AELO*" —GJO* + Py —xo® + ra0*)} o0*
+ ELuY Su¥ + ETer der + ELO* §0*);
1
-FJ LEL ™ + P + 3, 0%) ) du*
f
+{ELeX Y + P —x 0%) ) de*
A EL O =GO + Py — x 0¥ +r, 0%} 00*] dz = 0 (20)

where

l ) )
ry = \/I:A J\" {(."ﬁ_"\)-+(—‘:—-vx)_:' d"'}' (2[)

From geometrical boundary conditions at = = 0 and L, virtual displacements have to
satisty the equations

ou* =dr*=00*=0 at -=0,L. (22)

Thus, the necessary and suflicient conditions for eqn (20) to hold for any virtual
displacement, yield the following mechanical boundary conditions and equilibrium equa-
tions.

(Mechanical boundary conditions)

Elut" =0, EleY" =0, ELO0* =0, at -=0,L. (23a-c)

(Equtlibrium equations)
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ELu*® + P(u* +1,0*) =0
Elr*¥ + Pt* —x,0*) =0 . (24a—<)
ELO** —GJO* + P(y u*" —x,u* +r}0*") =0

5. BUCKLING OF A MONOSYMMETRIC BEAM UNDER END EQUAL MOMENTS

5.1. Buckling phenomena

We consider a simply supported thin-walled monosymmetric beam of length L under
end equal moments. As shown in Fig. 4, coordinates are so chosen that the y axis coincides
with the symmetric axis of the cross section of the beam.

Up to the critical bending moment M. this beam deforms in the y—z plane. Similar
to the buckling of a column. buckling phenomena of this structure is classified as a symmetric
bifurcation. Thus, when the bending moment A reaches the critical value M., the out-
of-plane displacements appear without the increase of the bending moment.

5.2, Internal strain energy

[t is well known that in-plane deformation before buckling has an effect on the critical
moment M, (Nishino ef al., 1973 ; Trahair and Woolcock, 1973). Therefore, in an exact
formulation, it is necessary to consider this effect in the calculation of strain energy.
However, the effect of the pre-buckling deformation on the usual structures is small in
magnitude (Nethercot, 1983) and this effect is generally ignored in practical analysis. Thus,
following the general practice as Ojalvo did in his formulation (1987b), we here ignore the
deformation before buckling and adopt the internal strain energy given by eqn (9).

5.3. Potential energy of external force
Under equal end moments, the external potential encrgy of the simply supported beam
is given by

W= =M =0]0). (25)

The above rotational displacements are further to be expressed by the incremental out-
of-plane displacements up to the second order terms. It should be noted that v*’ on the y
axis at both ends of the beum have the same value, that is v*’ = v*’, since torsional angle
0* is zero due to the geometrical boundary conditions of the simply supported beam. Thus,
egn (25) holds regardless of the location of the applied moment, as long as it is applied on
the 3 axis.

3
N

Yo

Y

Fig. 4. Monosymmetric beam undcr equal end moments.

SAS 2%:h-D



628 Y. Goro and W. F. CHeN

Consider an infinitesimal fiber d- of a beam initially parallel to the centroidal axis. The
length of the fiber just before buckling and that after buckling are respectively given as
follows, in the similar manner as shown in eqns (11).

_ L E_ﬁ- 2 [_l- 2 )
S (X
(1+&+e?) ds = {\/[(l fE 1) + <ﬁf")'+ (5-’— + “)]} d=. (26a.b)
cZ Ccz [Aeg c: CZ

[t should be noticed that eqns (26) include the in-plane transverse displacement ¢ before
buckling. different from eqn (11).
Making use of the condition of small displacements expressed by

u* et Cr* O Cw*t
o Ol PR i | (27a-¢)

oz oz C: (z C:

.= -+

- A O 2T B L T S I AL S U 2% b
G = ﬁ:+ oz +2 (z +2 F‘:+ ) (28a. b)

The above approximation procedure is exactly the same as that explained previously
in Section 4.3 and the Appendix. Thus, the incremental strain ¢ is finally given by

R ow* L u*N L [cerY  OF vt (29)
er= o+l )+ + s 2
: 0z 2\ ¢z RN iz 0z

Since there are no out-of-planc displacements before buckling, the transverse dis-
placement 7 coincides with that on the shear center 7. Substituting the incremental dis-
placement field of egns (3) into egn (29), eqn (29) is rewritten as follows.

eX = WM - xu* =y =l + Y — (=1 )0* )
+ U (e =)0 T Er + (x—x)EO0Y . (30)
Due to monosymmetry of the cross section, eqn (30) is further simplified as
X = wr —xut = yr* — w0+ )+ i)}

— (=)0 v 0 4+ Y=y )+ OF) - Eer +xE 0%, (31)
As explained in Scction 5.1, there is no increment in applied end moment A, at
buckling. The following equation holds.

AM, = J a¥*y dd = EJ e*ydd =0. 32)
A A

Substituting eqn (31) into eqn (32) and considering eqns (5) and (6), eqn (32) yields
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—Ler" =T 0% + 1LB.(6*) =0 (33)

where

1 s
B. = [—J (Cy+33) dAd -2y, (34)
x Jd

[t should be noted in eqn (33) that the effect of pre-buckling displacement disappears in

the course of integration over the cross-sectional area without ignoring it.
Equation (33) can be integrated with respect to = as

L
A I J [ 0% — 1B (6*')] d=. (35)
0

Substitution of eqn (35) into eqn (25) finally gives the potential energy of external
force:

L
W= —M‘f [ 0% — 1B (0*)) d-. (36)
0

Equation (36) is rewritten as follows, integrating by parts and considering the geo-
metrical boundary conditions at both ends.

L.
W= /ﬂ‘j L 0* + 1.(0*)) d=. (37
|

The above expression exactly coincides with that shown by Kitipornchai er al. (1986).
Substituting eqns (9) and (36) into eyn (8) and integrating by parts lead to

+(=ELO* " +GJO* + M 0% — M u*’) 0*
+ (= ELu*Y = M 0*) Su* — E[ 0% Se*)

STL+0W = [Efu* Su? + ELv* 5c* + EI,0%" 50%

L
+-[ [(ELu* + M 0%") $u* + El o™ 0
|

)

+ {ELO0*Y —(GJ+ M B)0* + M u*"} 50%] dz = 0. (38)

Under the geometrical boundary conditions of eqns (22), eqn (38) yiclds the following
mechanical boundary conditions and equilibrium equations.
{Mechanical boundary conditions)

Elu} =0, Ele* =0, EILO*=0 at =-=0,L. (39a—c)
(Equilibrium equations)

ELu*™ + M0 =0
Elwr® =0 : (40a)
ELO*® —(GJ+ M B)0* + Mt =0

With our consistent formulation, the theory including Wagner effect is naturally
obtained also for a monosymmetric beam under end equal moments.



630 Y. Goro and W. F. Cuex
6. DISCUSSION

6.1. Buckling of a column

Ojalvo’s formulation is different from the present author's only in the derivation of
the axial displacement w*|._, at centroid. which is shown in Section 4.3. In the derivation,
he assumes the incompressibility of the centroidal axis at buckling. His procedure can be
explained using the equations shown in this paper.

The condition of the incompressible centroidal axis at buckling is expressed math-
ematically as

e*=0 at (x=01r=0). D
Substituting eqn (41) into eqn (13). eqn (15) can be solved for w*" as
WX o= = LY (02 ) ) = n 0% u¥ 0% ek = M 0 (42)

wk._ o can be obtained as follows by integrating eqn {42) in the same manner as was used
in deriving eqn (19).

K .
Wilimog =

2.
j ) + ) +20% (e —x o)+ (3] + 0%} dz. (43)
1

3

B e

The above is what was obtained by Ojalvo (1987b).

With this axial displacement, he dertved the same governing equations as he presented
in his original paper (Ojalvo, 1981), possibly following the procedure described in Section
44,

However, the use of eqn (43) results in a change of axial force during buckling. This
is shown in the following.

Substituting eqn (42) into cqn (15), egn (15) is reduced to

eF = = Xyt * = ol — (= XY = () () L 0Y) (44)

Increment of axial force AP during buckling is calculated as follows using egn (44).
AP =J o* dd = FJ e*dd = g;:J. (P 4+17)y dA (%) (45)
A a N

It can be confirmed from eqn (45) that the magnitude of axial force P changes during
buckling. Thus, Ojalvo’s assumption does not agree with the buckling phenomena of the
present column and leads to erroncous results (Ojalvo, 1981, 1987b).

Blcich (1952) presented the total potential energy of a column under compressive force
uniformly distributed at both ends of the column. When deriving external potential energy,
he considered the compressive deformation of member axis at buckling.

However, Bleich showed that the potential energy considering the deformation of the
member axis can be exactly reduced to the one assuming the incompressible member axis,
if the condition of no change of external force is introduced. Thus, as far as the column
under uniformly distributed load is concerned. the assumption of incompressible member
axis happens to yield correct results. Nevertheless, the assumption itself is incorrect, which
will be explained in the following, utilizing the equations in this paper.

If we do not assume the incompressible member axis, the derivative of axial dis-
placement at an arbitrary point on the cross section is given by
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cw* 1 {éu*Y 1 [ce*Y
i “’=‘“§<¥) ‘5(3) (46)

= L) () R ur 0% (r— p) — e 0 (x—x,)

—Hr=r) +(x—x) 1 O*)?
+xuX e ol + (ur — xer )oY

— U=y )+ (x=x) J(O*)*

+ J Hyr—1) +(x—x,)F dd (0%)°. 47)
]

t2

A

By integration of eqn (47), the shortening d* of the longitudinal fiber is given by

. L[t , .
ot = 7J I:{(uf")‘-{-(r?")‘} =200 (v — e — (x—x )er)
[}

+

Hr =yt H (v =x) T HO*)

=2 =20 = 2 - 2(ud — xe Yo

F=r) (=) THO)

1

1 \ . s
- Aﬁ Lr=r) +(x=x,) ) dd (0*')-] d-. (48)

The underlined terms result from the compressive or the extensional deformation of
the member axis, while the others are the sume as those derived assuming an incompressible
member axis, e, ¢ = 0.

With the axial shortening given by eqn (48), we can calculate, as follows, the external
potential energy under uniformly distributed compressive force 4.

W= - j Go* dA = —6J o% dA. (49)
A A

If cyn (48) is substituted into eqn (49), all the underlined terms in egn (48) disappear
in the course of integration over the cross-sectional area from eqns (4) and (5a,b). As a
result, the external potential energy under uniformly distributed load exactly coincides with
that derived with the assumption of incompressible member axis, as given by

1
W= Wf [mr'r ) 20% (o — x )
(

)

+ ;I;J‘ {(y=y) +(x—x,)"} d4 (0"’)3] d=. (50
4

Considering 64 = P. eqn (50) further coincides with the external potential energy of
a column under concentrated compressive force which is expressed by eqns (10) and (19).
From the above derivation, we can understand that the assumption of incompressible



632 Y. Goto and W. F. CHenN

member axis happens to yield correct results in Bleich's case. However, it is easily verified.
as shown below, that the assumption itself is incorrect even in this case.

If the member axis s incompressible during buckling, the incremental axial strain e*
is zero over the cross-sectional area. This means that e* is always zero regardless of the
values of x, v and w. In order for this condition to be satisfied. the following equations
hold from egqn (135).

wE Y ) =0 = =0 =0 (1)
t s

Considering the end conditions, eqns (51) lead to no incremental transverse dis-
placements during buckling. which undoubtedly violates the buckling phenomena of the
column.

6.2. Buckling of a beam
Under end equal moments, external potential energy given by Ojalvo (19874.b) is
reduced to

L
W= A.‘/YJ [0 (" +2,0*") + 13, (0*)7] dz. (52
&

To demonstrate the discrepancy between egn (36) and cgn {52), eqn (52) can be
rewritten as follows, integrating by parts and substituting the geometrical boundary con-
ditions at both ends.

My

W= _.M‘J [ 0% + Ly (0%) ] d=. (53)

i

Considering that W is originally expressed by

1
W= :ﬁf‘f r* dz (54)
§

H
r*” can be given from eqn (53) as
R = O = L (0% (53)
The above equation is interpreted as what is used by Ojalvo to express ¢*” instead of
eqn (33). However, the use of eqn (55) results in an increment of the external moment
during buckling, which is shown in the following.

Substituting eqn (55) into eqn (31), axial strain ¥ is reduced to

s 3 73 3 ’ .
eF = w —xu® — w0 + L) A ) yat 0% e 0%

+ 0 =y A X0 T + X0 (56)

Increment of the applied moment at buckling can be calculated as
AM, = J' o*ydd = EJ e*y dd = YEL(B 41, )(0%)". (57)
A A

It can be confirmed from eqn (57) that the magnitude of external moment M, increases
during buckling. Thus, as in the case of the column, Ojalvo’s buckling theory can not
correctly explain the buckling phenomena of the beam.
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7. CONCLUDING REMARKS

In order to show the validity of the Wagner hypothesis, the governing equations for
the flexural-torsional buckling of a column as well as that of a beam are derived based on
the theorem of minimum potential energy without using Wagner hypothesis itself.

When deriving the potential energy of external forces, it is necessary to express the
displacements of external forces in terms of the incremental displacements whose com-
ponents newly appear at buckling. As known from the elastic buckling phenomena of a
column and a beam, there is no change of the external forces during buckling. Hence, it is
proper to use the above assumption in the calculation of the incremental displacements of
external forces. Following this procedure. authors naturally obtained governing equations
including the Wagner effect.

On the other hand, Ojalvo obtained new buckling theories of a column and a beam,
using assumptions different from authors’. That is. in the derivation of the column theory,
he adopted the assumption of incompressible member axis to calculate incremental axial
displacements. In the beam theory, he derived external potential energy from a geometrical
consideration on a deformed configuration of a beam without introducing any specific
assumptions. However, both of Ojalvo’s theories result in a change of external forces during
buckling. thus violating the symmetric buckling phenomena of a column and a beam. Since
there is no guarantee in the theories that will always agree with the buckling phenomena,
it can be concluded that Ojalve’s theories are incorrect.
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APPENDIX

Approximation of eqn (11h)
Taylor expansion of eqn (11b) gives the following expression for strain:

Goter = -l +00Y) = H{1-ly+00Y} (AD)
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From eqns (12). y is negligibly small compared with unity. that is

v« 1 (A3)

Since the nonlinear terms of 7 in eqn (A1) can be ignored with the help of eqn (A3). eqn (A1) is approximated

_ . _(’l(’ an* 1/éw R AN 1{Cu* N 1/ ce® 2
sresvsgrEaEtE)AE A\E) A

Equation (A4) can be rewritten as

; per = v n® ) | {éw  Cw* +l cut\ 1 féetY AS
cras\Fra st a)iriE) aE) (A%

Considering eqn (12¢), {(PW/0z) + (dw*/é:)] can further be ignored compared with unity, thus resulting in
eqn (13). The rest of the terms, i.e. $(Cu*/éz)* and !(ce*,/é2)°, cannot be ignored. because there is no such quantity
that can be compared to confirm that these terms are negligibly small.

There is another way to derive eqn (13) from eqn (A4). Equation (A4) can be solved for [(AW 82) + (w?/02)]

A Owe Aty oty ae e
P + n:‘ = | 4 I~ ;i:f + "..._' —-(('_.+t':) . (A6)

Making use of the Taylor expansion similar to eyn (A1), eqn (A6) is expressed by

as

as

v Cw* Lo 1ar . . s .
S o= M=+ 00N = L= A+ 040 (A7)
A 0z

. u*Y  [oe*y am e
A= — ﬂ: + ‘.‘: =2, +et) . (A8)

Taking into account eqns (12a, b) along with the fact that the axial strain &, +¢? is negligibly small compared
with unity, 4 can be treated as a small quantity which sutisfies the following condition :

Al (AY)

oW dwt (WA WAL .
az e == T\ el ) @y (A10)

It 1s clear that eqn (A10) yields eqn (13).

Thus, eqn (A7) is reduced to



